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Uk t2t 0) = u (2, $1 =qk (2) 
which contradicts the previous a~umption, Q. E. D. 

In conclusion thanks are given to G. I. Barenblatt and V. M, Entov for drawing the 
author’s attention to this problem. 
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Propagation of waves caused by the original rise on the surface of rotating liquid is con- 
sidered. The deformation of the disturbed level proceeds in accordance with the theory 

of long waves. The unsteady part of the wave rise may be treated as a limit superposi- 
tion of standing waves with phases allowing for a complete range of wave numbers. The 

original perturbations are assumed to act in such a manner that, as the distance between 
the nodes decreases, the elementary crests of an arbitrary component take a near-equi- 

librium position, It is permissible to use in such analysis of unsteady wave problems a 
Fourier integral the complex amplitude of which must be determined. Our analysis of 
waves in a channel is based on Sretenskii’s general hydrodynamic analysis of tsunami 

waves on a rotating half-plane p]. 

1. The value of the perturbed level in a channel of constant depth h can be found 
from the wave equation 

~+4”?5=gh(~+~) W) 
in which the initial functions are 

5 (2, Y, 0) = Wr, Y), aC (3, Y, 0) f at = JW* I#) (1.2) 

those perturbed motions that do not result variations of the liquid level in time are not 
considered. 

Assuming shockless initial values of the transverse components of the velocity and 
acceleration, the conditions of impenetrability at the boundaries y = 0, $J = 1 can 
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be written as follows: 

(1.3) 

which indicates that the Coriolis parameter is present. 

The initial perturbations (1.2) on an open surface, subjected to a centrifugal inertial 
force, will be reflected repeatedly when meeting perpendicular walls of the channel. 

The problem consists in finding the form of the free surface in the channel covered by 
unsteady waves. 

2, The wave rise &J, y, t) is found using the integral 

c(z, y, t) = [ A(t, y, k)eihx dk (2.1) 

in which the complex amplitude A(& y, k) is not known. According to the inverse 
Fourier transformation the initial functions (1. ‘L) can be represented as the following 
integrals : m co 

f (Y, W = & 5 M (L br) riki 6, cp (Y, 4 = & s N (E, I/) ctkE dE 
---oo --cc 

When (2.1) is substituted into (1. l), we have the well-known telegraphy equation 

PA ---_a_ 
w 

;;+SA=O, s2 = 402 + c2ks (2.2) 

with the transformed initial conditions 

A (0, Y, k) = f (!.I, h-1, 
3A (0, Y. 4 

at = cp (Y. k) (2.3) 

The boundary conditions of reflection from the channel walls y = 0, y = 1 follow 
from the state of impenetrability ; they are 

da_4 / at&~ - 2iokA = 0 (2.4) 

The problem of finding A(t, y, k) can be reduced to integrating a nonhomogeneous 

hyperbolic equation a2A / dtay - 2iokA = B(t,y,k) (2.5) 

For the function B(t, Y, k), which is the right side of (&5), the problem may now 

be formulated as follows: a function B(t, y, k) must be found that would satisfy the 
homogeneous equation PB -- 

w 
cz$+s~B=O (2.6) 

and the homogeneous boundary conditions 

B (t, 0, k) = B(t, 1, k) = 0 

and would have Cauchv initial conditions. i.e. 

B(O, Y, k) --- m (Y, I;), 
aB (0, Y. k) 

at =- n(~, k) 

(2.7) 

(2.8) 

where known functions m(y, k) and n(y, k) are reiated to the quantities in (‘2.3) by 

means of the following expressions : 

m (y, k) z ‘5 - 2iok f (y, k), n (y, k) = ~“2~ - 9 g - 2iok cp (y, k) (a.!)) 

3, Within the band t > 0, 0 < y \< 1 the solution of the characteristic problem 
of Cauchy with the mixed boundary conditions (2.7) (2.8) can be found using the Hada- 
mard method C-L]. The two-parameter family of characteristics y 77 ct = const splits 

the region in which the function B(t, y, k) exists into a number of separate subregions ; 
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an analog of the Riemann function,with a constant discontinuous change at the point in 
which a characteristic ls crossed, is determined for each subregion. Thus, when ct < y, 
the Riemann function is of the form 

R (a) = Jo ((s/c) Vii) = Jo ((a) )/A2 - (y - q)“) 

which corresponds to the differential equation (2.6) without the effect of the boundaries. 

Up to a certain instant, B(t, y, k) represents free propagation of the disturbances from 
their sources and can be written as 

B(t, Y, k)= ‘/aimW- CL, w+ m&t cl, WI+ (3.1) 
‘ytc1 

1 

+ -z 11-d s IR (6) n (q, k) + 2cat RR’ (a) m (rl, Nl drl 

The representation in the form of travelling waves (3.1) makes it possible to confirm 
that the initial conditions (2.8) are satisfied. The boundary condition at the wall y =0 

will be satisfied if the Riemann function is built by the mapping method 

R (or) = Jo ((s/c) )/G) = Jo ((s/c) hala - (Y + r1)‘) 
and then, for ct > y. 

B(t, y, k)=‘/a[m(Ct+ yv k)--(Ct-?/~ k)I + 
cf +u 

+$ s [R (a) n (7, k) + 2c*t R’ (4 m (v, 41 dtl - 

(3.2) 

Cl-U 

-& ; [R(al)n(q,k)+ 2catR'(~l~m(tlJWh 

ii 

The two forms (3.1) and (3. ‘2) are equivalent for an odd continuation of the initial 
functions (2.9) across the boundary y = 0. 

In the general case, for the purpose of satisfying the requirements of wave reflection 
(2.7) it is necessary to place fictitious sources in consecutive order across the band at 
the points &l,l + % ‘1 - %sl, - ‘1 - 291% 2q*‘l - Y 

after a suitable regrouping the common effect of these sources will be represented by 

the function of Riemann-Hadamard discontinuous solution 

H (t, Y, tl, k) = 2 R (a,,) + 2 R (~a,) - 2 R (og;) - 2 R (4 (3.3) 
q1 q* QI’ PI’ 

In a circle with a radius ct the quantities 

% = CV - (y - ?l - 2qJ)2, a,, = CV - (y - 7j + 2q21)’ (3.4) 
uq,e = c*ta - (y + Tl + 2q,‘l)‘, Qq,* = C*t* - (y + ‘1 - 2qa’1)* 

are the squares of the semichords passing through the point sources perpendicularly to 

the central axis. The geometry makes it clear that there are no reflected waves at any 
given instant, if the entire periphery of the circle is within the band t > 0, 0 < y < 1. 
The consecutive instants of reflection are associated with integers limited by the inequa- 
lities v+cr--- y + cl 

21 G-41 < 21’ 
cf - y cl-y+2 
T\<42 < 21 

cf - tJ - 1 
\< 91’ cc 

Cl2 ct A- 91 ct+!4+1 

21 21 ’ 
L < q2’< 

31 ‘I (3.5) 
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The number of summands in each of the sums in (3.3) may be either the same or may 
differ by unity, depending on the time and the location at which the arrival of the wave is 

observed. The lower and upper values of the inequalities (3.5) indicate the order in 

which individual perturbations arrive at a given point, including the channel boundaries. 

A term-by-term application of the Green formula in the regions bounded by the sec- 
tions of the boundaries and by the sections of adjacent characteristics leads to the fol- 

lowing expression : 

+ $~m(Y--~+29l’z,k)+~~m(y+ct-2ql’l,k)+ 
91’ 91’ 

n, 

-I- & 2 (‘ [R (%l) n (rl, 4 + 2%~~ tR’ (ao,) m (q, k) ]dq + 
QI 0 (tll = Y + ct - W) 

+ &x 1 W b,) n @I, 4 + 2ca tR’ (oQ,) m (rl, WI dq - 
PI nz (q2 =a21 +y -4 

- &~f'[R(~p,s)n(q,k) f 2catR'(a,Jm(v, k)ldrl- 
QI’ ‘0 (ns = ct - y - 2qiI) 

---&zf [R(o,t,)n(rl,k)+2catR’(a,,,)m(~,.k)ldtl 
9%’ n4 ($=2qz’Z-y-cct) 

(3.6) 

the prime in the function R denotes differentiation with respect to any transformation 

argument (3.4). Our final result (3.6) is a finite combination of individual solutions of 
two kinds : in the subregion which includes the limit of the band, the solutions correspond 

to the boundary value problem with the Cauchy initial data ; between the sections of 

characteristics, the solutions can be obtained by means of Riemann function. The expres- 

sion (3.6) which involves imaginary sources is the generalization of the expression (3.2), 

for an arbiaary instant. Thus, the ancillary problem of finding the function B(t, y, k) 
in Eq. (2.5) is now solved. 

4. In the characteristic Cauchy problem for Eq. (2.5) with the conditions (2.3) there 
are not enough data on the characteristic y = 0. Indeed, conditions (2.5) are given 

only on the characteristic t = 0 and they cannot, therefore, determine the integral of 

the hyperbolic equation (2.5). The condition (2.3) are compatible with (2.8) and do 
not contradict Eq. (2.5). but they do not introduce any new elements in our problem 
either. For a complete determination of the integral it is assumed that function A has 
along the characteristic y = 0 the values of a function F(t, k) which can be found 
from the supplementary postulate l-l]. In our case the integral of Eq. (2.5). in accordance 
with the data in the characteristics A (0, y, k) = f(y, kj, A\t, 0, k) = F(t, k) ..must 
everywhere satisfy the telegraphy equation(2.2). including the boundary y = 0 ; F(t, k) 
is assumed continuous, and having in the point t =I y = 0 a single-valued derivative, 
calculated for various directions. 

The function A (t, y, k) is developed by the Riemann function method 
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+ 9 jF(r, k)S’(p.)dr + jdrjs(r. q, k)dq (4.1) 
0 0 0 

We have preserved in the above the original notation of Sretenskii [1]: S(p) is the 
Riemann function for which 

S(0) = 1, p = (t - z) (y - rl)c p1 = t(!./ - rl), Pa = !/(t - r), PO = QI 

The left side of (2.2) becomes on the characteristic y = 0 an integro-differential 
equation 1 

F” (t, k) + s”F (t, k) + 4&*ka 5 F (7, k) (t - z) d% - (4.2) 

-cca a!?!_ 
( )_ 
ayl v iaf > _ o-2iokcat ayy o-c a#f-)vtidr- 0 

which reduces to an ordinary differential equation of the fourth order with constant coef- 
ficients, and the initial conditions are determined by the relation (4. ‘2) and from the 

value of A(t, y, k) at the point t = y = 0. 
After the integral has been found,differendation with respect to t leads to the func- 

tion 
F (1, k) = Cr cos 20r _I- Cz sin 202 + 17s cos kct + C, sin kct 

A (k, 20/c) 
+ 

, 

+ *(k,:o,c~j~~)o[~os20(t- r)-coskc(t-r)]dz 
0 

A(k, 20/c) = kg---4a’/cg 

the constants of the fundamental solutions are determined by the characteristic 

C, = f”(0, k) - 4$~-~f(O, k), C, = ikf’(0, k) - 2aPcp’(O,k) 

C.q = k2f(0,k) - f” (O,k), Cd = kc-‘cp’(O,k) - 2ioc-‘f’(O,k) 

(4.3) 

values 

(4.4) 

Having found the function (4.3). our problem is solved and all that remains to round up 

our general analysis is to express explicitly the particular solution of (4.3) with zero 

initial conditions. 

Outside the band t > 0, 0 < y < 1 the Cauchy data (2.9) are continued in a peri- 
odic manner, and the boundary value of the normal derivative is calculated from the 

sum expression (3.6). The particular solution is then provided by a Duhamel-type inte- 

-_ 1: Y m (Y, k) + m’ (y, k)] dy + 

+2cyR”(CL)m(rl,k)]rldll+$S Icos2o(t--+)--msk(ct---)]dyx 
0 
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x 2 1 ffi’@)nh k)+2cyR”&)m(rl, k)lvdrl 
(cont. ) 

The derivatives of the Riemann function are taken in the argument p = y2 - q2; 
the integers qr’, qzo follow from inequalities (3.5) considered at the boundary y = 0. 

The number of summands in the internal integrals of (4.6) differes at least by unity, 

hence a residual reflection wave may possibly be observed near a perpendicular wall. 

The function F(t,k ) defined by formulas (4.3)-(4.5). taken together, corresponds to 

the height of unsteady waves propagating along a perpendicular wall in a container. 
Expression (4.1) makes it possible to trace wave formation processes in the entire chan- 

nel. The Fourier inversion serves to conclude our problem. 

The author thanks ‘L. N, Sretenskii for his advice on this paper. 
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We investigate the spectra of kinetic and thermal fluctuation energy of isotropic turbu- 

lence, neglecting the viscosity and molecular heat conduction. Elementary solutions of 
the corresponding spectral equations obtained here, enable us to investigate the proper- 

ties of certain model spectra and a number of possible laws of decay in a simpler man- 
ner. 

As we know p], the spectral equations for the isotropic turbulence have the form 

(a/at + 2vkz)O(li, t) =- --alak 5’ (k, t) (1) 

(a/at i 2x#) U& (k, t) = --a/ak Ft (k, 1) (2) 

where k is the wave number, t is time, F and F, are the energy transfer functions, 
while @ and att are the fluctuation spectra defined by the equations 

c*) 

E (‘) = ; (UC> =z 
. 

s 
D (k, t) dk (3 

I, 

E, (i) 7: ~7”~) = \; CJ,, (k, t) dk 
c 
0 

($1 


